
On the Interplay of Parallelization, Program
Performance, and Energy Consumption

Sangyeun Cho, Member, IEEE, and Rami G. Melhem, Fellow, IEEE

Abstract—This paper derives simple, yet fundamental formulas to describe the interplay between parallelism of an application,

program performance, and energy consumption. Given the ratio of serial and parallel portions in an application and the number of

processors, we derive optimal frequencies allocated to the serial and parallel regions in an application to either minimize the total

energy consumption or minimize the energy-delay product. The impact of static power is revealed by considering the ratio between

static and dynamic power and quantifying the advantages of adding to the architecture capability to turn off individual processors and

save static energy. We further determine the conditions under which one can obtain both energy and speed improvement, as well as

the amount of improvement. While the formulas we obtain use simplifying assumptions, they provide valuable theoretical insights into

energy-aware processor resource management. Our results form a basis for several interesting research directions in the area of

energy-aware multicore processor architectures.

Index Terms—Multicore processor, Amdahl’s law, dynamic voltage and frequency scaling (DVFS), energy-delay product (EDP).

Ç

1 INTRODUCTION

A surge of attention is being paid to parallel processing
with the recent emergence of commodity multicore

processors. Microprocessors carrying two to eight general
processing cores are commercially available [2], [15], [21],
[31], [32] and projections suggest that future technologies
will allow integrating many more cores, potentially in the
order of hundreds to thousands, in a single chip [4], [22].
Abundant on-chip processing elements and much reduced
processor-to-processor communication overhead will offer
an unprecedented environment for efficient and affordable
parallel processing on every desktop.

While the increased amount of on-chip computing
resources promises higher performance through parallel
execution of applications, suppressing the power and
energy consumption remains an even more stringent
constraint to the design and management of such proces-
sors [5], [26]. The allowed power level has been and will be
limited to the same constant value (�150W) and the chip
operating voltage will not be significantly lowered in the
future, according to the ITRS projection [19]. Battery
capacity and efficiency are not improving as quickly as
the number of transistors in a chip increases. Henceforth,
many previously developed low-power and low-energy
ideas will play an even more significant role in future
multicore processors, including highly beneficial dynamic
voltage and frequency scaling (DVFS or simply DVS)
techniques [11], [35], [36] and the capability of turning off
individual processor cores [20].

This paper presents a theoretical study on the interplay
of parallelization, program performance, and energy con-
sumption. It has been previously pointed out that parallel
processing can be used to lower energy instead of
improving performance. For instance, Borkar [5] suggested
that a perfect two-way parallelization would lead to half the
clock frequency (and voltage), one-quarter of the energy
consumption, and one-eighth of the power density com-
pared with the sequential execution given the same
execution time constraint. Little work has been done,
however, to understand how parallelizing an application
would enable us to achieve both speedup and energy
improvement or how to obtain the best energy improve-
ment given an application and a processor architecture. We
will address the following specific questions:

1. What is the maximum energy improvement due to
parallelization, and how can we determine the
processor speeds to achieve that improvement?

2. How does static power affect the energy-optimal
program speedup and energy consumption?

3. Given a target speedup, how do we set the processor
speeds to minimize energy?

4. What is the condition for obtaining the minimum
energy-delay product?

Our goal in this work is to follow a simple analytical
approach, similar to the one used in Amdahl’s law [3], to
derive formulas that describe the behavior of the system.
For example, according to Amdahl’s law, the maximum
program speedup due to parallelization is

Speedup ¼ 1

sþ p
N

; ð1Þ

where ðsþ pÞ ¼ 1; s (p) is the ratio of the serial (parallel)
portion in the program, and N is the number of processors.
Using the same input parameters, we can calculate how
parallelization improves energy consumption:

342 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 3, MARCH 2010

. S. Cho and R.G. Melhem are with the Department of Computer Science,
University of Pittsburgh, 5407 Sennott Square, 210 S. Bouquet Street,
Pittsburgh, PA 15260. E-mail: {cho, melhem}@cs.pitt.edu.

Manuscript received 21 Oct. 2008; revised 23 Jan. 2009; accepted 19 Feb.
2009; published online 27 Feb. 2009.
Recommended for acceptance by D. Bader.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-10-0427.
Digital Object Identifier no. 10.1109/TPDS.2009.41.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

Improvement in Dynamic Energy ¼ 1

sþ p
Nð��1Þ=�

� �� ; ð2Þ

when the parallel program execution time is identical to the
sequential execution time and the dynamic power con-
sumption of a processor running at frequency f is
proportional to f�. The above equation, whose detailed
derivation will be shown in Section 3, illustrates that more
parallelism (larger p and smaller s) and more processors
(larger N) help reduce energy. Fig. 1 presents a plot of (2).
For a typical value of �, the energy improvement function
in (2) is growing faster than the speedup function in (1) with
p or N .1

The result obtained in this paper reveals interesting
relationships between processor speeds in the sequential
and parallel regions of a program and between dynamic
and static energy consumption. For instance, when indivi-
dual processors cannot be turned off, the total energy is
minimized when the dynamic energy is equal to 1=ð�� 1Þ
times the static energy regardless of the value of N or s.
Moreover, we find that minimum energy is achieved at
processor speeds smaller than the maximum speeds only
when � < ð�� 1Þ=N , where � is the ratio of the static power
consumption to the dynamic power consumption at the
maximum processor speed. Under this condition, the ratio
between the processor speed of the serial and parallel
section to minimize energy is N1=�. When the condition
does not hold, the program’s serial section must be
executed at full speed. If � > ð�� 1Þ, processor speeds in
both the serial and the parallel sections must be set to the
maximum speed to achieve the minimum total energy. The
above conditions are greatly relaxed if we can turn off
individual processors to save static energy consumption.

The rest of this paper is organized as follows: Section 2
presents our problem formulation and the two machine
models that we will consider in the paper. Sections 3 and 4
study the problem of minimizing energy consumption for
the two machine models, followed by a discussion on
energy-delay product in Section 5. Section 6 further
discusses how our derivations can be used in situations
when there are constant-speed operations (such as memory

access) whose latencies do not depend on the processor
speed. Sections 3, 4, and 5 assume that the processor speeds
simply determine the execution time of a program. Related
work will be discussed and contrasted with our work in
Section 7 and conclusions will be summarized in Section 8.

2 PROBLEM FORMULATION AND MACHINE MODELS

2.1 Problem Formulation and Assumptions

We have an application model identical to that of Amdahl’s
law. An application has a serial section that can be executed
by a single processor and a parallel section that can be
executed by any number of processors in the system, i.e., fully
parallelizable. When the number of processors employed is
N , the speedup of the parallel section isN . We do not consider
the overhead of processor-to-processor communications.

We normalize the sequential execution time of the
program to be 1, in order to present our derivation in an
intuitive way. Similarly, we normalize the amount of work
(i.e., number of cycles) in the program to be 1. Therefore, the
maximum clock frequency, Fmax, has a relative speed of 1
and the program has the serial portion whose amount of
work is represented with s, and the parallel portion with p (or
1� s). Fig. 2 shows this arrangement. The program speedup
is denoted by x and the resulting program execution time
with y ¼ 1=x. The clock frequencies for the two regions in the
work, namely, s and p, are calculated as follows:

fs ¼
s

t
; ð3Þ

fp ¼
1� s

ðy� tÞ �N: ð4Þ

We assume a DVFS scheme where voltage and frequency
are changed linearly. To be general, we also assume that the
power consumption of each processor consists of two
components, a frequency-dependent component that can be
controlled by changing the frequency of the processor
(DVFS), and a frequency-independent component that is
not controlled by DVFS. We call these two components as
“dynamic” and “static,” respectively. There have been
many studies to either theoretically or empirically model
the dependence of the power consumption on the operating
frequency, and most of these studies conclude that this
dependence can be approximated by C � f�, for some value
of � � 2 [30], [35]. The frequency-independent component
is a constant that depends on the technology and system

CHO AND MELHEM: ON THE INTERPLAY OF PARALLELIZATION, PROGRAM PERFORMANCE, AND ENERGY CONSUMPTION 343

1. In literature � is between 2 and 3, typically 3 [30], [35].

Fig. 1. Achievable dynamic energy improvement assuming � ¼ 3 and
using 1, 2, 3, and 4 processors given the parallel portion’s ratio of a
program.

Fig. 2. Normalized “work” and “time.” “Parallel time” is partitioned into

serial and parallel regions.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

architecture. However, assuming that Emax ¼ C � F�
max is the

energy of the frequency-dependent component at the
maximum processor speed, the energy for the frequency-
independent component can be normalized with regard to
Emax and expressed as � � Emax. In this paper, we further
normalize Emax to 1 so that the static power consumption is
simply �. Although the power model described above is
approximate, its simplicity allows us to compare the effect
of parallelism on the choice of processor speed policies
using closed-form formulas. It is common to use simplified
power models to derive DVFS policies [33].

Clearly, the benefit of any DVFS technique largely
depends on the value of �. Specifically, for systems with
relatively large �, the frequency-independent component of
power dominates the total energy consumption, and thus,
applying DVFS techniques will not produce any appreci-
able energy savings. However, in systems with relatively
small �, applying DVFS techniques can reduce the total
system energy consumption. Many DVFS algorithms have
been proposed recently and demonstrated to reduce power
consumption [11], [18], [25], [29], [35], [36], and many
commercial microprocessors are now equipped with DVFS
capabilities [8], [9], [16], [27].

For a given problem, s is fixed, and for a given
architecture, N , �, and � are fixed. Hence, the energy
consumption, E, is a function of t and y. Specifically,

Eðt; yÞ ¼ t � f�s þN � ðy� tÞ � f�p þN � � � y: ð5Þ

In (5), the three terms represent energy for the serial
portion, energy for the parallel portion, and energy for the
static power consumption during the whole execution
time, respectively. We do not consider the processor
temperature, and hence, the term for the static energy
is the product of per-processor power consumption rate, �,
the number of processors, N , and the total execution time,
y. We do not assume a specific interprocessor network
topology and do not consider energy consumption of the
interprocessor network.

In our problem formulation, we assumed that the
processor speed (or processor’s clock frequency) solely
determines the runtime of a program. However, certain
“constant-speed” operations, such as memory access
(caused by a cache miss in cache-based systems) and I/O
processing, may take a fixed amount of time that is
independent of the processor speeds. Consequently, in-
creasing or decreasing the processor speed will have
“sublinear” effect (rather than “linear”) on performance
[14]. For clear presentation and intuitive discussion, we will
not consider the impact of the constant-speed operations on
program execution time (and hence, energy consumption)
in the following three sections. However, Section 6 will
specifically discuss how constant-speed operations affect
our derivations and intuitions learned.

Finally, it is important to note that this work pays little
attention to practical issues of parallelizing an application
or mapping serial and parallel regions of an application to
multiple cores. We assume (as Amdahl’s law suggests) that
an application is perfectly parallelized given its parallelism
and work described by a parallel code region can be
perfectly distributed to an arbitrary number of processors.

2.2 Two Machine Models

In the problem formulation in (5), we assumed that

processors consume static energy in both the serial and

the parallel regions. That is, even when a processor is not

assigned a task to execute (and thus, sits idle), it consumes
static energy. Naturally, one would regard an idle processor

as an opportunity to save energy consumption if processors

can be turned off when not busy, given a mechanism to turn

off individual processors. Because low-energy consumption

via suppressing static power will be increasingly important,

viable mechanisms such as separate power supply designs
are actively explored in the context of multicore processors

in industry [20]. Hence, we will study in this work two

machine models: one without and one with the capability to

turn off individual processors. Throughout this paper, we

refer to these two machine models MA and MB.
For the simplicity of our derivation, we assume thatMB

can turn off or on processors without any overhead. Given
the same processor speed setting, the dynamic energy

consumption of MB is the same as that of MA: sum of the

first two terms in (5). Only the static energy part need be

replaced by t � �þN � ðy� tÞ � �.
We further assume that processors can run at an

arbitrary clock frequency, subject to the maximum fre-

quency Fmax in both machine models. While processor clock
frequencies in real chip implementations are typically

discrete, previous work showed that energy savings using

discrete frequencies closely match that of continuous

frequencies [18]. The speedup x one would achieve with

parallelization and processor speed scaling is subject to

x � 1

sþ p
N

ð6Þ

according to Amdahl’s law in (1). It is clear that this

condition is equivalent to fs; fp � Fmax ¼ 1, and y � sþ p
N .

We will discuss the two machine models in detail in the
following two sections.

3 MACHINE MODEL MA: PROCESSORS CANNOT

BE TURNED OFF INDIVIDUALLY

3.1 The Case of x ¼ 1

We first obtain the minimum energy consumption when

x ¼ 1 (or y ¼ 1), i.e., program execution time is unchanged.

Imposing the condition x ¼ 1 is similar to setting a

deadline, which is the original sequential execution time,

to finish the computation. While one can further reduce the
dynamic energy by slowing down processors, considering

the case of x ¼ 1 provides us with interesting insights as

well as a basis for later discussions. To minimize the total

energy, we rewrite (5) as

EðtÞ ¼ t s
t

� ��
þ Nð1� tÞ 1� s

ð1� tÞN

� ��
þ N�: ð7Þ

Next, we obtain the derivative of EðtÞ with respect to t,

dEðtÞ
dt
¼ �ð�� 1Þ � s�

t�
þ ð�� 1Þ � ð1� sÞ�

ð1� tÞ� �Nð��1Þ ; ð8Þ

344 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 3, MARCH 2010

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

and then, we compute the value of t which minimizes EðtÞ
by setting dEðtÞ=dt to 0 and obtain

t

1� t ¼
s

1� s �N
ð��1Þ
� : ð9Þ

Hence, the value of t which minimizes EðtÞ is

t� ¼ s

sþ p
N ð��1Þ=�

: ð10Þ

We are ready to obtain the values of fs and fp, which
minimize EðtÞ using (3), (4), and (10). Specifically,

f�s ¼
s

t�
¼ sþ p

Nð��1Þ=�; ð11Þ

f�p ¼ sþ p

Nð��1Þ=�

� �
�N�1

�; ð12Þ

¼ f�s =N
1
�: ð13Þ

Both f�s and f�p are a function of s and N in (11) and (12),
and (13) shows the relationship between fs and fp when
EðtÞ is minimized. Interestingly, the ratio between the two
frequencies, f�s =f

�
p , is a function of N , but not s.

Finally, from (7) and (10), we obtain the minimum
energy consumption

Emin ¼ Eðt�Þ ¼ sþ p

Nð��1Þ=�

� ��
þN � �: ð14Þ

Fig. 1 depicts the maximum energy improvement due to
parallelization (E�1

min) when the number of processors is
varied between one and four, assuming � ¼ 3 and � ¼ 0. It
is clear that energy improvement is a function mono-
tonically increasing with p and N . The curves are also
higher than those given by Amdahl’s law (not shown).
Fig. 3 shows how the overall energy (EðtÞ) changes as we
adjust t. It also presents t�, the value of t that minimizes
EðtÞ. Note that the optimal solution obtained for f�s and f�p
is feasible since both the frequencies are smaller than the
maximum frequency Fmax ¼ 1.

3.2 The Case of Unrestricted x

Amdahl’s law explores the effect of parallelization on
speedup, and we have described the effect of parallelization

on energy consumption when the program execution time
is unchanged, i.e., x ¼ 1. We note that the fixed value of x,
in turn, fixes the static energy consumption. We have thus
focused only on the dynamic energy consumption. Hence,
the optimal processor speeds in (11) and (12) are indepen-
dent of �. In this section, we relax the program execution
time constraint and revisit the same problem of minimizing
the total energy consumption. Unrestricting x will expose
the impact of static power consumption on the optimal
speed of a program’s serial and parallel sections.

We begin by setting the derivatives of (5) with respect to
both t and y to zero as follows:

@E

@t
¼ �ð�� 1Þ � s�

t�
þ ð�� 1Þ � ð1� sÞ�

ðy� tÞ� �N ð��1Þ ¼ 0 ¼)

t

y� t ¼
s

1� s �N
ð��1Þ=�;

ð15Þ

@E

@y
¼ ð�� 1Þ � ð1� sÞ�

ðy� tÞ� �N��1
� �N

� �
¼ 0 ¼)

ðy� tÞ ¼ �� 1

�

� �1
�

� 1� s
N

:

ð16Þ

Solving (15) and (16) for t and y gives

t� ¼ �� 1

�N

� �1
�

� s; ð17Þ

y� ¼ �� 1

�N

� �1
�

� sþ p

Nð��1Þ=�

� �
: ð18Þ

With t� and y�, we can use (3) and (4) to calculate the
optimum frequencies

f�s ¼
�N

�� 1

� �1
�

; ð19Þ

f�p ¼
�

�� 1

� �1
�

¼ f�s =N
1
�; ð20Þ

from which we can compute the minimum energy. Again,
note that f�s and f�p are independent of s and that the ratio
between them is N

1
�. An interesting observation is that at f�s

and f�p , the dynamic energy is given by

Edynamic ¼ t� � f�s þN � ðy� � t�Þ � f�p

¼ 1

�� 1
�N� � y�;

ð21Þ

which is equal to 1=ð�� 1Þ of the static energy,
Estatic ¼ N� � y�. In other words, the total energy consump-
tion is minimized when the dynamic energy consumption is
1=ð�� 1Þ times the static energy. This relation holds during
the execution of both the serial and the parallel sections of
the program.

The above solution is only applicable if both f�s and f�p
are smaller than Fmax, however, necessitating that
� � ð�� 1Þ=N . If �, the ratio between the static and
dynamic power, is large so that it is not possible to
maintain the aforementioned relation between the static and

CHO AND MELHEM: ON THE INTERPLAY OF PARALLELIZATION, PROGRAM PERFORMANCE, AND ENERGY CONSUMPTION 345

Fig. 3. Dynamic energy consumption versus serial time for two cases,

s ¼ 0:25 and s ¼ 0:5, when N ¼ 4. The bound of t is marked with “X”

(when fs ¼ Fmax ¼ 1) and “O” (when fp ¼ Fmax ¼ 1). The minimum

energy point in each curve (at t ¼ t�) is marked with a filled rectangle.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

dynamic energy, we should set fs ¼ 1 and find the values of
y and fp that minimize the total energy consumption.
Denoting these values by y�� and f��p , we obtain

y�� ¼ sþ p

N

� �
� �� 1

�

� �1
�

; ð22Þ

f��p ¼
�

�� 1

� �1
�

: ð23Þ

Again, these values result in the dynamic power consump-
tion being 1=ð�� 1Þ times the static power consumption
during the execution of the parallel portion of the program.

In order to summarize the relationship between � and
speedup that results in minimum energy consumption, we
show that relationship in Fig. 4. In this figure, the values of
� are divided into three regions. When � � ð�� 1Þ=N , the
solution for the optimum energy consumption problem is
given by (18), (19), and (20). When ð�� 1Þ=N < � � ð�� 1Þ,
the solution is given by fs ¼ 1, (22), and (23). Finally, when
� > ð�� 1Þ, the solution is given by fs ¼ fp ¼ 1, and the
speedup is that given by Amdahl’s law (1).

3.3 Optimal Energy Consumption Given a Speedup

We have thus far considered the problem of calculating the
optimal speeds of processors (hence, program speedup) to
minimize the total energy consumption given p, �, and N .
In this section, we consider the problem of how to set the
speeds of the processors (fs and fp) to minimize the total
energy consumption when the target program speedup x

(or, equivalently, y) is specified. Because the static energy
N� � y is immediately determined given x, we only need to
minimize the dynamic energy while meeting the program
speedup requirement and our solution derived from (3), (4),
(18), (19), and (20) is as follows:

If x � 1

sþ p
Nð��1Þ=�

; f�s ¼ xf�s;x¼1; f
�
p ¼ xf�p;x¼1; ð24Þ

if
1

sþ p
Nð��1Þ=�

< x � 1

sþ p
N

; f�s ¼ 1; f�p ¼
px

Nð1� sxÞ ; ð25Þ

where f�s;x¼1 and f�p;x¼1 are the optimal frequencies when

x ¼ 1, as given in (11) and (12), respectively. We call the

interval in (24) as the linear frequency scaling interval because

the energy-optimal fs and fp can be obtained by simply

scaling f�s;x¼1 and f�p;x¼1 by a factor of x. We also note that

the upper bound of the condition in (24) is, in fact,

equivalent to � � ð�� 1Þ=N .
Fig. 5 shows how the minimum energy consumption

changes as we target a different program speedup, along
with the contribution of the dynamic and static energy
consumption. It is noticeable from the plot that the
dynamic energy of the sequential region saturates at
around x ¼ 2:3. This is due to the inability to scale fs
beyond Fmax. Finally, when fs ¼ fp ¼ 1 (i.e., at the max-
imum speedup), the dynamic energy is 1; it is the same as
that of sequential execution.

We point out that static power consumption plays an
important role in determining the minimum energy con-
sumption of an application. Fig. 6 depicts the improvement
ratio of the minimum energy at different program speed-
ups, relative to the baseline sequential execution of a given
application. The plot clearly demonstrates that a smaller �
leads to a larger energy improvement ratio at any selected
program speedup. Moreover, the largest energy improve-
ment ratio occurs at a smaller program speedup. In other
words, one can slow down processor speeds further to
benefit from reducing dynamic energy to a greater degree
before static energy starts to offset the benefit, if � is small.

346 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 3, MARCH 2010

Fig. 4. � changes the speedup of a program when its energy

consumption is minimized. We assume that � ¼ 3.
Fig. 5. Optimal energy at the program speedup of x when � ¼ 3. The

thick dotted line shows the sequential machine’s energy consumption

(1þ �).

Fig. 6. Energy improvement at different speedups over sequential

execution.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

The formulas derived in this section also show that, for a
given processor implementation (�; �, and N), the mini-
mum total energy is a monotonically decreasing function of
the number of processors, N , as long as the parallel section
of the code can be executed on N processors. Hence, from
the point of view of the total energy consumption, all
available processors should be used. It should be noted,
however, that this result and all the results given in this
section assume that the N processors in the system consume
static power, even during the serial section of the code.

4 MACHINE MODEL MB: PROCESSORS

CAN BE TURNED OFF INDIVIDUALLY

For machine modelMA considered in the previous section,
there was no reason for using fewer than the available
N processors during parallel execution. However, because
MB allows us to turn off individual processors, there may
be an advantage of not using all the available processors to
execute the parallel sections of programs. Hence, in this
section, we use a variable, n, to denote the number of
processors used during the parallel program sections.
Consequently, we rewrite the energy equation with t, y,
and n as parameters:

Eðt; y; nÞ ¼ tf�s þ nðy� tÞf�p þ t�þ nðy� tÞ�: ð26Þ

We note that 1 � n � N , where N is the total number of
processors that can be used. While n assumes discrete
values, we will treat it as a continuous function when we
derive the conditions for optimal energy consumption.

4.1 Conditions for Optimal Energy Consumption

We will begin from (26) to derive the conditions for
obtaining the minimum total energy consumption

@E

@t
¼ s

� � ð1� �Þ
t�

� ð1� sÞ
�ð1� �Þ

nð��1Þðy� tÞ� þ �� n� ¼ 0¼)

s�ð1� �Þ
t�

¼ ð1� sÞ
�ð1� �Þ

nð��1Þðy� tÞ� þ n�� �:

ð27Þ

Similarly, we have

@E

@y
¼ ð1� sÞ

�

nð��1Þ �
ð1� �Þ
ðy� tÞ� þ n� ¼ 0¼)

y ¼ tþ p
n
� �� 1

�

� �1=�

:

ð28Þ

Note that we assume � > 0 in the above. Finally, we have

@E

@n
¼ ð1� sÞ

�

n�
� ð1� �Þ
ðy� tÞð��1Þ

þ ðy� tÞ � � ¼ 0¼)

n ¼ p

y� t �
�� 1

�

� �1=�

:

ð29Þ

The result in (29) is, however, identical to (28). We will
discuss why this is the case, after first obtaining t�; f�s ,
and f�p .

From (27) and (28), we obtain t� which minimizes the
total energy consumption

t� ¼ s � �� 1

�

� �1=�

: ð30Þ

It is interesting to observe that t� for machine modelMB in
(30) is quite similar to that ofMA in (17), except that it does
not have n in the scene. That is, the energy-optimal time
allocated to the serial section (thus the speed of the single
processor used) does not depend on the number of
processors, n. It is only dependent on the amount of work
s, the formula for dynamic power f�, and the ratio of static
power to the dynamic power �.

Now, the optimal execution time y� is obtained from (28)
and (30) in the following, as well as the optimal frequencies
to the serial and the parallel sections

y� ¼ s � �� 1

�

� �1=�

þ p

n
� �� 1

�

� �1=�

; ð31Þ

f�s ¼
s

t�
¼ �

�� 1

� �1=�

; ð32Þ

f�p ¼
p

ðy� � t�Þ � n ¼
�

�� 1

� �1=�

: ð33Þ

The above equations illustrate that the optimal energy is
obtained when f�s ¼ f�p , i.e., all the processors are given the
same speed during program execution regardless of the
serial or the parallel section. Moreover, the optimal
processor speeds f�s and f�p do not depend on n or s; they
are immediately determined by � and �. At first, this
seemed counterintuitive to us; why are f�s and f�p not
dependent on n or s?

To address the above question, consider the same value

of f�s and f�p ; ð �
��1Þ

1=�. We call this value as the energy-optimal

processor speed in that it leads to the smallest total energy

consumption for a processor if performance is not con-

sidered, given the dynamic power consumption rate f�,

and the static power consumption rate �. If we do not

consider program execution time, as long as the total

amount of work is distributed to processors and they are

kept busy, we obtain the minimum energy consumption.

Hence, the solution does not depend on the number of

processors used. That our solution is independent of n is

indirectly verified by the redundant result we obtain for @E
@n

(in (29)), which is identical to (28).

The above result can be clarified by a simple example.

Assume that the s cycles in the serial section of a program are

executed by a processor P1, at a speed fs, while the ð1� sÞ
cycles in the parallel section are executed by two processors

P1 and P2 at speed fp (see Fig. 7a). Because only executing

processors incur static energy, the energy consumption for

the system is equal to that consumed when P1 executes the

ð1� sÞ=2 cycles executed by P2 at speed fp after it finishes

executing its own s cycles at speed fs and ð1� sÞ=2 cycles at

speed fp (see Fig. 7b). However, because of the convexity of

the power function, we know that, with a single processor

CHO AND MELHEM: ON THE INTERPLAY OF PARALLELIZATION, PROGRAM PERFORMANCE, AND ENERGY CONSUMPTION 347

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

executing, the optimal energy consumption occurs when the

processor executes at a fixed speed, which implies that

fs ¼ fp ¼ fopt. In this example, to find the optimum speed fopt

which minimizes the total energy E ¼ s � f��1
opt þ ð1� sÞ �

f��1
opt þ �=fopt ¼ f��1

opt þ �=fopt, we set dE
df ¼ ð�� 1Þ � f��2 �

�=f2 ¼ 0 to obtain fopt ¼ ð�=ð�� 1ÞÞ1=�. This argument is

valid for n > 2 as well.
The results obtained in (31), (32), and (33) are only valid

if f�s and f�p are smaller than Fmax ¼ 1. That is when

�

�� 1

� �1=�

< 1 or � < ð�� 1Þ: ð34Þ

This condition is greatly relaxed compared with that ofMA,

where the condition was � < ð�� 1Þ=N . If condition (34)

does not hold, i.e., processors consume too much static

power, both f�s and f�p should be set to 1, the maximum

speed, to minimize the program execution time and the

static energy consumption.
Given the same processor speeds used in program

execution, it is clear that the ratio between the energy

consumption in the program’s serial section and the parallel

section is s=p. The minimum energy consumption including

both dynamic and static energy is

Etotal ¼ Edynamic þEstatic

¼ �� 1

�

� �1�1
�

þ � � �� 1

�

� �1=�

;
ð35Þ

which, as in the case of model MA, is achieved when the
static energy is ð�� 1Þ times the dynamic energy. Fig. 8
depicts the minimum energy consumption of machine
model MB at different � values. The plot demonstrates
that the minimum energy consumption decreases mono-
tonically with �.

4.2 Optimal Energy Consumption Given a Speedup

In this section, we consider the problem of obtaining the
minimum total energy consumption when a desired
speedup x (equivalently, program execution time y) is
specified. This problem is equivalent to finding a value of t
which minimizes the total energy (26), given a value of y and
n, and accordingly, we have the same derivation as in (27).
Unfortunately, the derivation in (27) by itself does not give
us a closed-form formula to directly solve; hence, we resort
to numerical methods to present our results in this section.

Fig. 9 shows how the minimum energy consumption
changes as we target a different program speedup, x, along
with the contributions of the dynamic and static energy
consumption. At the maximum speedup dictated by
Amdahl’s law, when fs ¼ fp ¼ Fmax ¼ 1, the dynamic
energy consumption reaches 1 (i.e., same as the dynamic
energy consumption of sequential execution) and the total
energy reaches 1þ � (i.e., same as the total energy
consumption of sequential execution).

Fig. 10 further shows how the improvement ratio of the
minimum energy changes with the different value of

348 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 3, MARCH 2010

Fig. 7. Running a program having a serial portion s with (a) two

processors and (b) one processor.

Fig. 8. Minimum total energy at different � values for MB. X axis is

log-scale.

Fig. 9. Optimal energy at the program speedup of x. The thick dotted line

shows the sequential machine’s energy consumption (1þ �).

Fig. 10. Energy improvement at different speedups over sequential

execution.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

program speedup. As we saw in Fig. 6, it is again confirmed
that the value of � determines the shape and direction of
each energy improvement-speedup curve.

4.3 Energy Advantage of Turning
Off Idle Processors

Fig. 11 compares the two machine models, MA and MB,
with respect to the minimum energy consumption at
different program speedups. It is shown that the energy
consumption ofMB is strictly lower than that ofMA at any
desired speedup. At the maximum program speedup, MB

has the same energy consumption as sequential execution,
regardless of the number of processors used.

Finally, we consider the energy consumption of the two
machine models at the maximum program speedup given
by Amdahl’s law, 1=ðsþ p=NÞ. Under this condition, MA

consumes 1þ ðsþ p=NÞ �N� while MB consumes ð1þ �Þ.
Hence, the ratio between the consumption in the two
machine models at the maximum program speedup is

EðMAÞ
EðMBÞ

¼ 1þ �

1þ � � ðN � 1Þ � s: ð36Þ

Fig. 12 depicts this ratio as we vary the number of
processors. It is shown that a larger � value leads to a higher
ratio between the energy consumption values of the two
machine models. That is, as expected, the advantage of
turning off processors increases when the static power is
larger. Furthermore, when more processors are introduced,

the ratio also grows, suggesting that MA consumes much
more energy as we scale the system than MB.

5 MINIMIZING ENERGY-DELAY PRODUCT

In the previous sections, we have considered the problem of
obtaining the minimum energy given the two machine
models MA and MB. In many systems, however, it is
desirable to strike a trade-off between energy consumption
and performance by minimizing the energy-delay product
rather than the total energy. We study the problem of
obtaining the minimum energy-delay product (or ED) in
this section.

5.1 MA: Processors Cannot be Turned
Off Individually

The ED for MA is expressed as follows:

EDðt; yÞ ¼
�
tf�s þNðy� tÞf�p þN�y

�
y: ð37Þ

In order to minimize EDðt; yÞ, we obtain @ED
@t and @ED

@y , and
set them to zero and obtain

t� ¼ �� 2

2N�

� �1=�

�s; ð38Þ

y� ¼ �� 2

2N�

� �1=�

� sþ p

Nð��1Þ=�

� �
; ð39Þ

CHO AND MELHEM: ON THE INTERPLAY OF PARALLELIZATION, PROGRAM PERFORMANCE, AND ENERGY CONSUMPTION 349

Fig. 11. Minimum energy consumption at different speedups forMA andMB. Plots for three different � values are shown: 0.2, 0.4, and 0.6 from left.

The thick dotted line shows the sequential machine’s energy consumption (1þ �).

Fig. 12. Ratio of the total energy ofMA to that ofMB at the maximum program speedup Amdahl’s law dictates. Plots for three different � values are

shown: 0.2, 0.4, and 0.6 from left.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

from which we get

f�s ¼
2N�

�� 2

� �1=�

; ð40Þ

f�p ¼
2�

�� 2

� �1=�

: ð41Þ

It is shown that f�p ¼ f�s =N
1
� as in (20). In fact, by comparing

the values obtained in this section for t�, y�, f�s , and f�p with
(17), (18), (19), and (20), we observe that they are the same
equations with the replacement of ð�� 1Þ with ð�� 2Þ=2.
This similarity also appears in the calculation of energy.
Specifically, we can compute the dynamic energy when ED
is minimized to be

Edynamic ¼
2

�� 2
�N� � y�; ð42Þ

which is equal to 2=ð�� 2Þ of the static energy, Estatic ¼
N� � y�.

In other words, while the total energy consumption is
minimized when the dynamic energy consumption is 1=ð��
1Þ times the static energy consumption, the energy-delay
product is minimized when the dynamic energy consump-
tion is 2=ð�� 2Þ times the static energy consumption.

The processor speeds given by (40) and (41) for the
minimum energy-delay product are only valid when they
are less than the maximum speed, Fmax ¼ 1. That is, when
� < ð�� 2Þ=2N . When the static energy is high to the point
of violating this condition, we should use f�s ¼ 1, which
gives t ¼ s. Hence, as was done in Section 3.2, ED should be
rewritten as a function of y and the optimum value for fp
should be obtained by solving @ED

@y ¼ 0.

5.2 MB: Processors Can be Turned off Individually

It was demonstrated in Section 4 that, when it is possible to
turn off individual processors, the minimum total energy
consumption occurs when the processor speeds in the
parallel and the serial execution sections are equal and are
given by ð�=ð�� 1ÞÞ1=�. Given that this result is indepen-
dent of the number of processors that are used, then the
goal of minimizing the energy-delay product can be
achieved when as many processors as possible are used
to execute the parallel section to minimize completion time.

In fact, if we write the energy-delay product for MB as

EDðt; y; nÞ ¼
�
tf�s þ nðy� tÞf�p þ t�þ nðy� tÞ�

�
y; ð43Þ

and differentiate ED with respect to t; n, and y, and set the

result to zero, the first two equations that we obtain are

identical to (27) and (29) while the third equation that we

obtain from @ED
@n ¼ 0 is different from (28). Recall that @E@n ¼ 0

and @E
@y ¼ 0 resulted in two dependent equations, namely

(29) and (28), which led to the result that the minimization

of energy in model MB is independent of n. Thus, when

minimizing ED, the equations resulting from @ED
@t ¼ 0 and

@ED
@n ¼ 0 give us the same solution for t� and y� as in the case

of minimizing the energy. The equation resulting from
@ED
@y ¼ 0, however, can be shown to be only satisfied when

n ¼ 1 (or alternatively, y� � t� ¼ 0). That is, the energy-

delay product is minimized when n ¼ 1.

In many systems, the number of processors is fixed to

some value N . This is particularly true in CMPs with a fixed

number of cores. In these cases, the energy-delay product is

minimized when n ¼ N . To obtain the values of t and y

(and, hence, fs and fp that minimize EDðt; yÞ), (43) should

be written with n ¼ N and differentiated with respect to t

and y. Unfortunately, the equations resulting from @ED
@t ¼ 0

and @ED
@y ¼ 0 in this case cannot be solved analytically.

Numeric techniques are needed to obtain a solution.

6 EFFECT OF CONSTANT-SPEED OPERATIONS

In our problem formulation in Section 2 and derivations in
the previous three sections, we assumed that processor
speed (processor’s clock frequency) solely determines the
runtime of a program region. In this section, we will discuss
how constant-speed operations, such as memory access and
I/O processing, affect program execution time and, hence,
our derivations.

Taking memory access as an example of constant-speed
operations, a simple single-core performance model that
relates performance to the processor frequency is [7], [28]

T ðfÞ ¼Wcore �
1

f
þ Tmem; ð44Þ

where Wcore is the work for the core and Tmem is the time for
memory, unaffected by the processor frequency f . In (44), it
is clearly shown that the program execution time is split
into a frequency-dependent part (first term) and a
frequency-independent part (second term).

The same intuition about the constant-speed operations
in (44) can be applied to our parallel workload formulation.
Fig. 13 presents a modified problem formulation after
incorporating the constant-speed operations. Let us assume
that the constant-speed operations (e.g., memory access) are
distributed uniformly across the work and their aggregated
amount is m (m < 1). With this assumption, the total work
is split into two parts, speed-scaled work and non-speed-scaled
work, whose amount is n (same as 1�m) and m,
respectively. If we assume that memory accesses from

350 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 3, MARCH 2010

Fig. 13. “Work” is partitioned into speed-scaled work (“n”) and non-

speed-scaled work (“m”). GivenN processors, tm, the parallel time form

is m � ðsþ p=NÞ regardless of processor speeds.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

multiple processor cores can be overlapped, then the total
amount of time spent on the constant-speed operations (tm)
is: m � ðsþ p=NÞ. As was the case with a single processor
core example in (44), given N , the time spent on constant-
speed memory operations with N processors does not
change with the processor speed.

Because the effect of the constant-speed operations is a
fixed offset in the parallel execution time, our derivations
and discussions in Sections 3, 4, and 5 can still apply to this
new problem formulation. A simple way to directly apply
our derivations in this new formulation is to “translate” the
variables used in the two problem formulations. For
instance, as shown in Fig. 13, s0, the serial section in the
speed-scaled work, is a scaled down value of s (Fig. 2) with
the factor of n; n < 1. Similarly, p0 ¼ n � p. The program
execution time is the sum of the time for the speed-scaled
section and the constant value tm, given N . Hence, a target
program speedup x can be translated into x0 for the speed-
scaled work, x0 ¼ ðx�1 � tmÞ�1. If one wishes to vary N , N
can become a variable as well, as in Section 4.

In summary, introducing constant-speed operations in
the workload model does not fundamentally change our
problem formulation and the framework for deriving
solutions. Given that translating a problem formulated
using Fig. 13 into a problem based on our original problem
formulation (Fig. 2) is straightforward, we do not pursue in
this paper the task of deriving new formulas that
incorporate the impact of constant-speed operations.

7 RELATED WORK

Amdahl’s law [3], being of a very simple form, has inspired
much work in the domain of computer architecture and
parallel processing [1], [12]. Using Amdahl’s law, recently,
Hill and Marty [13] looked into the trade-off between
processor core types and sizes in a multicore processor,
parallelism in applications, and processor performance (i.e.,
large, high-performance, power-hungry cores versus small,
low-performance, low-power cores). They demonstrate the
performance advantage of a heterogeneous architecture
featuring large, high-performance processor cores, and
many small cores. They did not, however, consider power
or energy consumption. Woo and Lee [34] extended [13] to
consider energy efficiency of processor architectures using
different core types and confirmed that a heterogeneous
architecture with a full-blown core along with many small,
power-efficient cores is a viable alternative to homogeneous
many-core architectures. They assume that processor cores
have nominal power consumption levels and do not
consider scaling voltage and speed of the processor cores.
In our previous work [6], we considered the problem of
optimizing energy when running a parallel application and
presented a problem formulation that became a foundation
of this work. However, we [6] did not study a machine
model where individual processor cores can be turned off,
or the energy-delay metric.

Energy saving techniques that utilize available timing
slack with DVFS have been extensively studied, especially
in the domain of real-time task scheduling [18], [25], [29],
[35], [36]. While much previous work has been on
improving energy on uniprocessor systems, Zhu et al.

[36] introduces the concept of slack sharing on multi-
processor systems and Mishra et al. [25] utilizes the static
slack based on the degree of parallelism in a schedule.
Compared with previous heuristic-oriented energy-aware
task scheduling strategies, our work in this paper focused
on understanding the interaction between parallelization,
performance, and energy consumption by constructing an
analytical model to directly derive the minimum energy
given a parallelized application.

More recently, Ge et al. [11] studied distributed
performance-directed DVFS strategies for use in HPC
clusters, which exploit fine-grained timing slacks to save
energy. Ge and Cameron [10] studied power-aware speedup,
defined as the ratio between the single-processor perfor-
mance at the lowest available on-chip frequency and the
parallel execution time. They partition a given workload
into a portion of the workload accessing on-chip data and
another portion accessing off-chip data. The main goal of
their study is to derive a more accurate parallel speedup
model for modern processors capable of DVFS.

Isci et al. [17] studied chip-wide power management
strategies to meet the maximum power consumption
allowed for the processor and showed that their best
strategy, when backed up by a per-core DVFS mechanism,
is able to achieve the maximum power consumption budget
without degrading the overall chip throughput signifi-
cantly. While their goal was to meet the specified power
budget in a multicore processor and used multipro-
grammed workloads for their study, they also confirmed
the observation, like ours, that the role of DVFS in multicore
processors is of growing significance.

Finally, Li and Martı́nez [23] presented an analytical
model to derive power consumption and performance
when nominal parallel efficiency and the number of
processors in a chip multiprocessor are given. However,
they do not consider serial and parallel regions in a parallel
application separately and abstract the performance of
parallel execution with “parallel efficiency.” In their later
work [24], they proposed a dynamic power performance
adaptation technique using heuristics-based DVFS and
sleep mode control. Unlike our work which focuses on the
analytical approach and latency-oriented parallel applica-
tions, they targeted applications requiring a steady-state
rate (e.g., multimedia application), and studied a search-
based solution to the problem of power minimization.

8 CONCLUSIONS

In this paper, we developed an analytical framework to
study the trade-offs between parallelization, program
performance, and energy consumption. Although this
framework is based on many simplifying assumptions,
some of which are inherited from Amdahl’s law and some
of which are specific to variable-speed processors, it
provides interesting insights on these trade-offs. The main
simplification inherited from Amdahl’s law is that the
parallel section of an application is fully parallelizable. The
simplifications assumed about the processors include:

1. ignoring the overhead of changing speeds and
turning off processors;

CHO AND MELHEM: ON THE INTERPLAY OF PARALLELIZATION, PROGRAM PERFORMANCE, AND ENERGY CONSUMPTION 351

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

2. the number of cycles (i.e., program execution time) is
proportional to the processor speed;

3. the ratio of static to dynamic power consumption �
is independent of the processor temperature; and

4. the dynamic power consumption at frequency f is
proportional to f�, where f can continuously vary
between 0 and a maximum speed.

The framework is kept intentionally simple to obtain
general results that provide broad insights on the effect of
the different parameters of the problem.

We considered two machine models; one assumes that
individual processors cannot be turned off independently,
and the other assumes that they can. In the first machine
model, our analysis shows that total energy is minimized
when the static energy is equal to ð�� 1Þ times the dynamic
energy while the energy-delay product is minimized when
the static energy is ð�� 2Þ=2 times the dynamic energy. Both
the minimum energy and the minimum energy-delay are
obtained when the speed of the serial section fs is Nð1=�Þ, the
speed in the parallel section, fp. The values of fs that minimize
the energy and the energy-delay product are independent of s
(the program characteristics) and are given by ðN�=ð��
1ÞÞ1=� and ð2N�=ð�� 2ÞÞ1=�, respectively. For an application
that requires a specific quality of service (i.e., a specific
speedup), the analytical framework also provides a simple,
yet powerful, way of determining the processors speeds that
minimize the energy or the energy-delay product. It also
provides for a simple way to determine the effect of the static/
dynamic power ratio on the aforementioned trade-offs.

When processors can be individually turned off, the
analysis indicates that the minimum total energy is indepen-
dent of the number of processors used for executing the
parallel section, while the energy-delay product is minimized
when the maximum number of available processors are used
during the parallel execution section. For the energy
optimization, it is shown that the minimum energy is
obtained when the speeds during the serial and the parallel
sections are equal, which again results in the static energy
being equal to ð�� 1Þ times the dynamic energy.

The demonstrated substantial power advantage that can
be gained from turning off individual processors is a great
incentive to designing multicore processors with the
capability of turning off individual processors. The frame-
work, in its current form, however, does not show the
advantage of scaling the speeds of cores individually. This
is mainly due to the uniform parallelism assumed in the
Amdahl’s execution model. A more complex execution
model is needed to demonstrate the advantage of indivi-
dual processor speed scaling.

ACKNOWLEDGMENTS

This work was supported in part by a grant from Intel and by
US National Science Foundation (NSF) grants CCF-0702236,
CNS-0524634, and ITR-0325353.

REFERENCES

[1] G.S. Almasi and A. Gottlieb, Highly Parallel Computing, second ed.
Benjamin/Cummings Publishing Company, 1994.

[2] AMD Dual-Core Processors, http://www.amd.com, 2009.

[3] G.M. Amdahl, “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities,” Proc. Am.
Federation of Information Processing Soc. (AFIPS) Conf., pp. 483-
485, 1967.

[4] K. Asanovi�c, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K.
Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams,
and K.A. Yelick, “The Landscape of Parallel Computing Research:
A View from Berkeley,” Technical Report UCB/EECS-2006-183,
Univ. of California, Berkeley, Dec. 2006.

[5] S. Borkar, “Microarchitecture and Design Challenges for Gigascale
Integration,” Proc. Int’l Symp. Microarchitecture (MICRO), Dec.
2004.

[6] S. Cho and R.G. Melhem, “Corollaries to Amdahl’s Law for
Energy,” IEEE Computer Architecture Letters (CAL), vol. 7, no. 1,
pp. 25-28, Jan. 2008.

[7] K. Choi, R. Soma, and M. Pedram, “Fine-Grained Dynamic
Voltage and Frequency Scaling for Precise Energy and Perfor-
mance Trade Off Based on the Ratio of Off-Chip Access to On-
Chip Computation Times,” Proc. Design Automation and Test in
Europe Conf. (DATE), Feb. 2004.

[8] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M.
Braganza, S. Meyers, E. Fang, and R. Kumar, “An Integrated
Quad-Core Opteron Processor,” Proc. Int’l Solid-State Circuits Conf.
(ISSCC), pp. 102-103, Feb. 2007.

[9] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr,
G. Mittal, E. Chan, Y. Chan, D. Plass, S. Chu, H. Le, L. Clark, J.
Ripley, S. Taylor, J. Dilullo, and M. Lanzerotti, “Design of the
Power6 Microprocessor,” Proc. Int’l Solid-State Circuits Conf.
(ISSCC), pp. 96-97, Feb. 2007.

[10] R. Ge and K.W. Cameron, “Power-Aware Speedup,” Proc. Int’l
Parallel and Distributed Processing Symp. (IPDPS), pp. 1-10, Mar.
2007.

[11] R. Ge, X. Feng, and K.W. Cameron, “Performance-Constrained
Distributed DVS Scheduling for Scientific Applications on Power-
Aware Clusters,” Proc. Conf. Supercomputing, pp. 34-44, Nov. 2005.

[12] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, fourth ed. Morgan Kaufmann Publishers,
2007.

[13] M.D. Hill and M.R. Marty, “Amdahl’s Law in the Multiore Era,”
Computer, vol. 41, no. 7, pp. 33-38, July 2008.

[14] C.-H. Hsu and W.-C. Feng, “Effective Dynamic Voltage Scaling
through CPU-Boundedness Detection,” Proc. Workshop Power-
Aware Computing Systems (PACS), Dec. 2004.

[15] Intel, “A New Era of Architectural Innovation Arrives with Intel
Dual-Core Processors,” Technology@Intel Magazine, pp. 1-11, May
2005.

[16] Intel, Intel XScale Microarchitecture, technical summary, 2000.
[17] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,

“An Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget,”
Proc. Int’l Symp. Microarchitecture (MICRO), pp. 347-358, Dec. 2006.

[18] T. Ishihara and H. Yasuura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” Proc. Int’l Symp. Low-
Power Electronics and Design (ISLPED), pp. 197-202, Aug. 1998.

[19] ITRS (International Technology Roadmap for Semiconductors),
2005 ed., http://public.itrs.net, 2005.

[20] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie,
“Comparison of Split- Versus Connected Core Supplies in the
POWER6 Microprocessor,” Proc. Int’l Solid-State Circuits Conf.
(ISSCC), pp. 298-299, 604, Feb. 2007.

[21] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way
Multithreaded Sparc Processor,” IEEE Micro, vol. 25, no. 2, pp. 21-
29, Mar./Apr. 2005.

[22] M. LaPedus, “Intel Tips Teraflops Programmable Processor,”
EETimes, Sept. 26, 2006.

[23] J. Li and J.F. Martı́nez, “Power-Performance Considerations of
Parallel Computing on Chip Multiprocessors,” ACM Trans.
Architecture and Code Optimization (TACO), vol. 2, no. 4, pp. 397-
422, Dec. 2005.

[24] J. Li and J.F. Martı́nez, “Dynamic Power-Performance Adaptation
of Parallel Computation on Chip Multiprocessors,” Proc. Int’l
Symp. High Performance Computer Architecture (HPCA), pp. 77-87,
Feb. 2006.

[25] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem, “Energy
Aware Scheduling for Distributed Real-Time Systems,” Proc. Int’l
Parallel and Distributed Processing Symp. (IPDPS), pp. 21-29, Apr.
2003.

352 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 3, MARCH 2010

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

[26] R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. Pollack, and J.P. Shen,
“Coming Challenges in Microarchitecture and Architecture,” Proc.
IEEE, vol. 89, no. 3, pp. 325-340, Mar. 2001.

[27] N. Sakran, M. Yuffe, M. Mehalel, J. Doweck, E. Knoll, and A.
Kovacs, “The Implementation of the 65 nm Dual-Core 64b Merom
Processors,” Proc. Int’l Solid-State Circuits Conf. (ISSCC), pp. 106-
107, 590, Feb. 2007.

[28] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg, “FAST:
Frequency-Aware Static Timing Analysis,” Proc. Real-Time Systems
Symp. (RTSS), Dec. 2003.

[29] D. Shin, J. Kim, and S. Lee, “Intra-Task Voltage Scheduling for
Low-Energy Hard Real-Time Applications,” IEEE Design and Test
of Computers, vol. 18, no. 2, pp. 20-30, Mar./Apr. 2001.

[30] A. Sinha and A.P. Chandrakasan, “JouleTrack—A Web Based
Tool for Software Energy Profiling,” Proc. Design Automation Conf.
(DAC), pp. 220-225, June 2001.

[31] B. Sinharoy, R.N. Kalla, J.M. Tendler, R.J. Eickemeyer, and J.B.
Joyner, “POWER5 System Microarchitecture,” IBM J. Research &
Development, vol. 49, nos. 4/5, pp. 505-521, July-Sept. 2005.

[32] T. Takayanagi, J.L. Shin, B. Petrick, J.Y. Su, H. Levy, H. Pham, J.
Son, N. Moon, D. Bistry, U. Nair, M. Singh, V. Mathur, and A.S.
Leon, “A Dual-Core 64-bit UltraSPARC Microprocessor for Dense
Server Applications,” IEEE J. Solid-State Circuits, vol. 40, no. 1,
pp. 7-18, Jan. 2005.

[33] R. Teodorescu and J. Torrellas, “Variation-Aware Application
Scheduling and Power Management for CMPs,” Proc. Int’l Symp.
Computer Architecture (ISCA), pp. 363-374, June 2008.

[34] D.-H. Woo and H.-H.S. Lee, “Extending Amdahl’s Law for
Energy-Efficient Computing in the Many-Core Era,” Computer,
vol. 41, no. 12, pp. 24-31, Dec. 2008.

[35] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for
Reduced CPU Energy,” Proc. Symp. Foundations of Computer Science
(FOCS), pp. 374-382, Oct. 1995.

[36] D. Zhu, R. Melhem, and B.R. Childers, “Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-
Processor Real-Time Systems,” Proc. Real-Time Systems Symp.
(RTSS), pp. 84-94, Dec. 2001.

Sangyeun Cho (S’95-M’04) received the BS
degree in computer engineering from Seoul
National University in 1994 and the PhD degree
in computer science from the University of
Minnesota in 2002. In 1999, he joined the
System LSI Division of Samsung Electronics
Co., Giheung, Korea, and contributed to the
development of Samsung’s flagship embedded
processor core family CalmRISC(TM). He was a
lead architect of CalmRISC-32, a 32-bit micro-

processor core, and designed its memory hierarchy including caches,
DMA, and stream buffers. Since 2004, he has been with the Computer
Science Department at the University of Pittsburgh as an assistant
professor. His research interests are in the area of computer
architecture and embedded systems, with particular focus on perfor-
mance, power, and reliability aspects of memory hierarchy design for
next-generation multicore processors. He is a member of the IEEE.

Rami G. Melhem received the BE degree in
electrical engineering from Cairo University in
1976, the MA degree in mathematics and the MS
degree in computer science from the University
of Pittsburgh in 1981, and the PhD degree in
computer science from the University of Pitts-
burgh in 1983. He was an assistant professor at
Purdue University prior to joining the faculty of the
University of Pittsburgh in 1986, where he is
currently a professor of computer science and

electrical engineering. His research interests include power manage-
ment, real-time and fault-tolerant systems, optical networks, high-
performance computing, and parallel computer architectures. He served
on the program committees of numerous conferences and workshops.
He was on the editorial board of the IEEE Transactions on Computers
and the IEEE Transactions on Parallel and Distributed Systems. He is
serving on the advisory boards of the IEEE technical committees on
computer architecture. He is the editor for the Springer Book Series in
Computer Science and is on the editorial board of the Computer
Architecture Letters, the International Journal of Embedded Systems,
and the Journal of Parallel and Distributed Computing. He is a fellow of
the IEEE and the IEEE Computer Society, and a member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHO AND MELHEM: ON THE INTERPLAY OF PARALLELIZATION, PROGRAM PERFORMANCE, AND ENERGY CONSUMPTION 353

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 29, 2010 at 12:32 from IEEE Xplore. Restrictions apply.

